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We obtain the conformal symmetry vector in static, spherically symmetric 
spacetimes, in terms of functions subject to a number of integrability conditions 
that also place restrictions on the metric. Some conformal symmetries found 
previously are regained as special cases. 

1. I N T R O D U C T I O N  

Recently, conformal symmetries have generated considerable interest 
in the literature. These symmetries, in conjunction with the conventional 
isometries, help to provide us with a deeper insight into the spacetime geome- 
try. In addition they assist in the generation of solutions, sometimes new 
solutions, to the Einstein field equations. As far as we are aware, Herrera et  
al. (1984) were the first to find such solutions to the field equations when 
modeling conformally invariant fluid spheres (which suffered from the defect 
of  nonregularity). Maartens and Maharaj (1990) generated models of confor- 
mally invariant anisotropic fluid spheres which were regular at the center. 
For the application of conformal symmetries in cosmology, see, among others, 
Castejon-Amenedo and Coley (1992) and Maharaj et al. (1991). 

A conformal Killing vector ~ is defined by the action of ~ on the 
metric tensor field g: 

,~:~ gij = 2d~gij (1.1) 
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where ~ = ~(x/) is the conformal factor. In spite of extensive analyses of 
conformal symmetries, equation (1.1) has been integrated in general only in 
a few cases: Minkowski spacetimes (Choquet-Bruhat et aL, 1977), Robert- 
son-Walker spacetimes (Maartens and Maharaj, 1986), and pp-wave space- 
times (Maartens and Maharaj, 1991). To make progress one often has to 
impose another restriction on the conformal vector ~. To simplify the analysis 
of (1.1), Herrera et al. (1984) assumed that 

~ u i  = ~ui (1.2) 

where u is the fluid 4-velocity, so that fluid flow lines are mapped conformally 
onto fluid flow lines. The existence of a conformal Killing vector ~ does not 
necessarily imply (1.2); Maartens et al. (1986) showed that (1.2) is in fact 
a special case of 

~I~U i : ~JU i -1- V i 

where uivi = 0, and studied the kinematical and dynamical properties of 
anisotropic fluids for this general case. Coley and Tupper (1990a) called 
vectors satisfying (1.2) inheriting conformal Killing vectors as fluid flow 
lines are mapped conformally. They subsequently investigated the existence 
of inheriting vectors in spherically symmetric spacetimes with a perfect-fluid 
energy-momentum tensor (Coley and Tupper, 1990b) and with anisotropic 
fluids (Coley and Tupper, 1994). 

We consider a static, spherically symmetric spacetime with coordinates 
(x i) = (t, r, O, d~) so that the line element is given by 

d s  2 : -  - e 2 v ( r ) d t  2 + e2X(r)dr2 + r2(dO 2 + sin20 d~b 2) (1.3) 

Our intention is to investigate the conformal symmetries of the spacetime 
(1.3). We integrate (1.1) without any additional assumptions; in particular, 
we do not assume a priori the inheriting condition (1.2). Coley and Tupper 
(1994) make the observation that most conformal Killing vectors known are 
in spherically symmetric spacetimes. Thus a systematic study of conformal 
symmetries in spacetimes with spherical symmetry is needed, as conformal 
symmetries are rare. Toward this end, we explicitly determine the extra 
conditions that the conformal symmetry places on the metric tensor field. 
These conditions provide the basis for a (future) study of solutions to the 
Einstein field equations with the general conformal synlmetry obtained here. 

2. CONFORMAL EQUATIONS 

In this section we analyze the conformal symmetry for static, spherically 
symmetric spacetimes without making any assumptions about the form of 
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the conformal vector. The conformal Killing 
metric (1.3) reduces to the following system of  equations: 

v'6 + 6 ~ = ,  

vector equation (1.1) for the 

(2.1 a) 

-e2~6~ + eZX6] = 0 (2.1b) 

-e2~6~ + r262 = 0 (2.1c) 

-e2~6g + r 2 sin20 63 = 0 (2.1d) 

k'61 + 6~ = t~ (2.1e) 

e2X60! + r26r 2 = 0 (2.1f) 

eiX6~ + r 2 sin20 63 = 0 (2.1g) 

61 + r62 = rt~ (2.1h) 

~,~ + sinZ0 63 = 0 (2.1i) 

6 t + r cot 0 62 + r6~ = r0  (2.1j) 

where subscripts denote partial differentiation and primes denote differentia- 
tion with respect to r. The equations (2.1) are a coupled system of  first-order, 
linear partial differential equations for the conformal vector ~ = (6 ~ 61, 62, 
63) and the conformal factor t~. 

It is possible to integrate the system (2.1) in general. In a tedious, but 
straightforward calculation we find that the components 6 ~ 61, 62, 63, and t~ 
decouple and a number of  integrability conditions are generated. We do not 
provide details of  the calculation, as the integration process is standard [see 
Maartens and Maharaj (1991) for the procedure] and lengthy; it is a simple 
matter to confirm that the given solution satisfies (2. l) by direct substitution. 
The general solution of  the system (2.1) is given by the components of  the 
vector ~: 

6 ~ = r2e -2v sin 0 [M, sin do - ~ ,  cos do] - r 2 e - 2 ~ t  cos 0 + # (2.2a) 

61 = r2e -2x sin 0 [ -s~r  sin do + ~ r  cos do] + r2e-ZX~ r cos 0 + ~s (2.2b) 

62 = cos 0 [,~ sin d o - ~ cos do] + ~ sin 0 + al sin do + a 2 Cos do (2.2c) 

63 = csc 0 [M cos do + ~ sin do] - cot 0 (at cos do + a 2 sin do) + a3 (2.2d) 

and the conformal factor 

t~ = r 2 sin 0 sin do ( - v ' e - 2 X •  r + e-2VMtt) 

+ r 2 sin 0 cos do ( v ' e - 2 X ~  r - e-Xv~t t  ) 

+ r 2 cos 0 (v'e-2Xc~ r - e-2Vc~tt ) + v '~{  + a~t (2.3) 



2288 Maharaj, Maartens, and Maharaj 

where ,7/ = ,~(t, r), ~ = ~(t ,  r), ~ = q~(t, r), off = off(t, r), and ~ = ~s r) 
are functions of integration and a~, az, and a3 are constants. This solution is 
subject to the following integrability conditions: 

eZ~(r2e-2~t )~  + r2~t~ = 0 (2.4a) 

r2v'e-2Xs~r - r 2 e - 2 ~ , t  = ~.'rZe-2Xs~r + (r2e-2Xs~r)r (2.4b) 

re-ZXs~r + s~ = r Z ( v ' e - 2 X ~  r -- e-Zvs~tt) (2.4c) 

e2~(rZe-2~t )~  + rZ~6tr = 0 (2.4d) 

rZv'e-ZX~~ r -- r2e-2V~tt  = h ' r2e -ZX~  r + (rZe-2X~"~r) r (2.4e) 

re -2X~r  + ~ = r 2 ( v ' e - 2 X ~ r  -- e-2V~tt)  (2.4f) 

eZV(rZe-2~t)r  + r2~tr = 0 (2.4g) 

r Z v ' e - 2 X ~  -- r2e-2'~f~tt = h'rZe-2XC~r + ( rZe-ZX~)r  (2.4h) 

re-2Xc~ r jr. ~ : r2(v '  e - 2 X ~  - e-2V~tt) (2.4i) 

eZ~off~ - eZX~, = 0 (2.4k) 

We emphasize that the solution (2.2)-(2.3), subject to the integrability condi- 
tions (2.4), is the most general conformal symmetry of the static, spherically 
symmetric spacetime (1.3). Note that in the above solution the angular 
dependance (0, ~b) of the conformal vector ~ has been completely determined; 
there is freedom only in the t and r coordinates. Also, the conformal symmetry 
is nonstatic in general, so that the static property of the spacetime is not 
inherited by the conformal symmetry. 

3. S O M E  S P E C I A L  CASES 

First consider the special case of Killing symmetries. By setting t~ = 0 
in (2.3) and analyzing the integrability conditions (2.4), we obtain 

= 0, ~ = 0, cg = 0, ~ = 0, off = const 

Thus the general Killing vector of (1.3) is 
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0 0 
= r ~-~ + (--al sin ~b + a2 cos ~b) 0--0 

0 
+ [ - c o t  0 (al cos qb + a2 sin qb) + a31 q)O-- 7 (3.1) 

We generate the familiar four-dimensional Lie algebra of the Killing vectors 
spanned by the vectors 

0 0 
GO 191' ~1 O+ 

0 0 
~2 = cos + ~ - sin + cot 0 0---~ 

~3 = sin + + cos d~ cot 0 0-~ 

by appropriate choices of the constants al, a2, a3, and ~ in (3.1). 
Spherical symmetry has motivated the choice of the conformal Kill- 

ing vector 

0 0 
= ~~ 0 ~ + ~(t ,  r) 

with a static conformal factor t~ = ~(r) in previous analyses. For consistency 
with this form of the conformal symmetry the functions M, ~ ,  ~ and the 
constants al, a2, a3 in (2.2) vanish. The conformal factor (2.3) and the 
integrability conditions (2.4) may be expressed as 

q~ = l ~ r  
r 

(1-- 1)') ~ = Ct 

e 2 " r  e2Xgt = 0 

v'~s + r = h ' •  + ~s 

We integrate this system to obtain the vector 

0 0 
l j -  ( r  r O - -  

Or 
(3.2) 
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and the gravitational potentials are given by 

eZ~ = CZr2 exp(-2oflB-1I r-le-Xdr ) 

B 2 
e 2k = __  

where of 1, of z, B, and C are constants. 
This form of the conformal Killing vector (3.2) has been used by Maar- 

tens and Maharaj (1990) to construct static conformally invariant anisotropic 
solutions. We regain their results if we set 

B =  1, o f l = k ,  Of 2 = A  

Herrera et aL (1984) and Herrera and Ponce de Leon (1985) considered the 
simpler case of a static vector ~ = (~~ ~l(r), 0, 0). Their case is regained 
if we set off i = k = 0. The solutions of Herrera et aL and Herrera and Ponce 
de Leon, with a static conformal vector, are irregular at the center. The 
solutions of Maartens and Maharaj, with a nonstatic conformal vector but 
static conformal factor, are regular at the center, but have negative pressures. It 
may be possible to overcome this undesirable physical feature if the conformal 
factor is nonstatic, t~ = t~(t, r). 

The solution of the conformal Killing equation presented here forms 
the basis for a systematic classification of conformal symmetries, including 
inheriting symmetries. This is a problem presently under study and we intend 
to publish a comprehensive treatment of conformal symmetries in static, 
spherically symmetric spacetimes in the future. 
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